Telegram Group & Telegram Channel
Moderately hot take: современный LLM-based AI engineering больше похож на времена до Imagenet moment, чем на эпоху расцвета диплернинга.

В эпоху до диплернинга (которую я застал краем глаза в контексте компьютерного зрения), в распоряжении инженера был набор стандартных инструментов, ни один из которых не был достаточно универсальным для end-to-end решения, и задачи решались набором костылей разной степени изящества. SIFT и другие ключевые алгоритмы уже придумали мудрецы в башне из слоновой кости, твоя задача - собрать из препроцессингов и эвристик что-то работающее для конкретной задачи и конкретного датасета. Кстати, тогда тоже были RAGи, и тоже работали так себе.

Во времена расцвета диплернинга, все больше задач стали решаться end-to-end, и потому ключевыми инструментами стали околоархитектурные изменения (включая знаменитый stack more layers) и, конечно, большие и чистые датасеты. Если предложить делать какой-нибудь adaptive histogram equalization перед инференсом какого-нибудь Resnet/Unet, в приличном обществе на тебя будут смотреть с опаской - пусть сеть сама это выучит, оставь свои древние штучки для аугментаций! Умение сделать кастомный лосс важнее умения придумать релевантную эвристику.

И вот с foundation моделями прошел полный оборот: большие модели делают умные GPU-rich ребята, соваться туда в подавляющем большинстве случаев бессмысленно, и надо снова придумывать пайплайны с эвристиками. Перебор разных фильтров в препроцессинге до сходимости был в той же степени хаком, как и идея добавлять wait в конец генерации; сейчас бы оно легло в парадигму test-time scaling и не считалось зазорным.



tg-me.com/partially_unsupervised/243
Create:
Last Update:

Moderately hot take: современный LLM-based AI engineering больше похож на времена до Imagenet moment, чем на эпоху расцвета диплернинга.

В эпоху до диплернинга (которую я застал краем глаза в контексте компьютерного зрения), в распоряжении инженера был набор стандартных инструментов, ни один из которых не был достаточно универсальным для end-to-end решения, и задачи решались набором костылей разной степени изящества. SIFT и другие ключевые алгоритмы уже придумали мудрецы в башне из слоновой кости, твоя задача - собрать из препроцессингов и эвристик что-то работающее для конкретной задачи и конкретного датасета. Кстати, тогда тоже были RAGи, и тоже работали так себе.

Во времена расцвета диплернинга, все больше задач стали решаться end-to-end, и потому ключевыми инструментами стали околоархитектурные изменения (включая знаменитый stack more layers) и, конечно, большие и чистые датасеты. Если предложить делать какой-нибудь adaptive histogram equalization перед инференсом какого-нибудь Resnet/Unet, в приличном обществе на тебя будут смотреть с опаской - пусть сеть сама это выучит, оставь свои древние штучки для аугментаций! Умение сделать кастомный лосс важнее умения придумать релевантную эвристику.

И вот с foundation моделями прошел полный оборот: большие модели делают умные GPU-rich ребята, соваться туда в подавляющем большинстве случаев бессмысленно, и надо снова придумывать пайплайны с эвристиками. Перебор разных фильтров в препроцессинге до сходимости был в той же степени хаком, как и идея добавлять wait в конец генерации; сейчас бы оно легло в парадигму test-time scaling и не считалось зазорным.

BY partially unsupervised


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/partially_unsupervised/243

View MORE
Open in Telegram


partially unsupervised Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

partially unsupervised from jp


Telegram partially unsupervised
FROM USA